Algebraic thinking, with its structured and symbolic characteristics, provides a unique perspective for geometric problems that is different from traditional geometric methods. This article analyzes the logical framework of algebraic methods and the essential properties of geometric problems, explores the abstract and generalized abilities exhibited by algebra in solving problems, and combines typical geometric problem examples to demonstrate the differences between algebraic and geometric methods in solving paths, evaluating the effectiveness and limitations of algebraic thinking in dealing with complex geometric structures. The research results indicate that algebraic thinking can not only simplify complex geometric problems, but also provide new problem-solving ideas, with broad potential for application.