inverse problem; dynamical system method; regularization; semigroup
摘要:
针对反问题中出现的第一类算子方程 Au=f,其中 A 是实 Hilbert 空间 H上的一个无界线性算子。利用动力系统方法和正则化方法,求解上述问题的正则化问题的解:u' (t)=-A*(Au(t)-f)利用线性算子半群理论可以得到上述正则化问题的解的半群表示,并证明了当t ↑∞时,所得的正则化解收敛于原问题的解。
for the first kind of operator equation Au = f, a is an unbounded linear operator on the real Hilbert space H. The dynamic system method and regularization
method are used to solve the regularization problems of the above problems u' (t)=-A*(Au(t)-f) By using the theory of linear operator semigroup, we can obtain the semigroup representation of the solution of the above-mentioned regularization problem, and prove that when t ↑ ∞, the regularization solution obtained converges to the solution of the original problem.