International Open Access Journal Platform

logo
open
cover
Current Views: 60579
Current Downloads: 79593

Modern Computer Technology and Application

ISSN Print:2708-2326
ISSN Online:2708-2334
Contact Editorial Office
Join Us
DATABASE
SUBSCRIBE
Journal index
Journal
Your email address

大数据环境下Python 课程混合式分类教学方法研究

Research on Mixed Classification Teaching Method of Python Course in Big Data Environment

Modern Computer Technology and Application / 2023,5(4): 39-46 / 2023-11-17 look470 look535
  • Authors: 洪樱      许小静     
  • Information:
    武汉纺织大学计算机与人工智能学院,武汉
  • Keywords: 大数据;数据处理;Python 课程;混合式分类教学
  • Big data; Data processing; Python course; Mixed classification teaching
  • Abstract: 为了顺应大数据时代对数据处理能力的要求,本文根据Python编程语言本身的优点并结合学生的学科专业特点,提出Python课程混合式分类教学方法。主要论述了混合式分类教学模式的内容,Python课程的教学现状及混合式分类教学的必要性,最终分析混合式分类教学的设计方案。在混合式教学模式中提出了“预习—理论学习—实践学习—总结与反思”的教学过程,在分类教学中以案例法说明了分类教学法的流程。混合式分类教学方法的实施,不仅能培养学生独立使用Python开发程序,提高计算机应用水平;还能有效提高教学效率与质量。
  • In order to meet the requirements of data processing ability in thebig data era, this paper proposes a mixed classification teaching method forPython courses according to the advantages of Python programming languageand the characteristics of students’ disciplines. This paper mainly discussesthe content of mixed classification teaching mode, the teaching status ofPython course and the necessity of mixed classification teaching, and finallyanalyzes the design scheme of mixed classification teaching. In the mixedteaching mode, the teaching process of “Preview - Theoretical Study - PracticalStudy - summary and reflection” is put forward. In the classified teaching, theprocess of the classified teaching method is explained by the case method. Theimplementation of mixed classification teaching method can not only trainstudents to independently use Python to develop programs, but also improvetheir computer application level. It can also effectively improve teachingefficiency and quality.
  • DOI: https://doi.org/10.35534/mcta.0504006
  • Cite: 洪樱,许小静.大数据环境下Python 课程混合式分类教学方法研究[J].现代计算机技术与应用,2023,5(4):39-46.
Already have an account?
+86 027-59302486