国际中文开源期刊平台

logo
open
cover
当前浏览量 34302
当前下载量 49895

应用数学资讯

Applied Mathematics Information

ISSN Print:2707-4722
ISSN Online:2707-4730
联系编辑部
加入我们
友情链接
邮箱订阅
选择期刊索引
选择期刊
您的邮箱地址

有向图中的最短路径、关键路径的解决方法探析

The solution of shortest path and critical path in directed graph

应用数学资讯 / 2019,1(1):16-28 / 2019-12-27 look647 look510
  • 作者: 刘芊     
  • 单位:
    江西师范大学,南昌
  • 关键词: Grdbner 基;约化;路径;权值
  • Grdbner base; Reduced; The path; A weight
  • 摘要: 对于一个给定的有向图G,G 中两个相邻顶点vi → vj 的路径可以用多 项式vi → vj 来表示,并用dij 记其边的权值,而dij 可由在Ω={0,1} 的范围内 解线性方程组来确定。该结果可以用来解决有向图的最短路径、关键路径等问题, 并且此方法还可推广到无向图,用来解决哈密顿道路和回路,欧拉道路和回路 等问题。
  • Given a directed graph G, G of two adjacent vertex vi to vj paths can use polynomial vi, vj, and dij remember the edge has a weight, and dij may consist in Ω = {0, 1} within the scope of the solution system of linear equations to determine. The results can be used to solve the shortest path and critical path problems of directed graphs, and the method can also be extended to undirected graphs to solve Hamiltonian roads and circuits, euler roads and circuits and other problems.
  • DOI: https://doi.org/10.35534/ami.0101004c
  • 引用: 刘芊.有向图中的最短路径、关键路径的解决方法探析[J].应用数学资讯,2019,1(1):16-28.
已有账号
027-59302486