International Open Access Journal Platform

logo
open
cover
Current Views: 37616
Current Downloads: 53228

Applied Mathematics Information

ISSN Print:2707-4722
ISSN Online:2707-4730
Contact Editorial Office
Join Us
DATABASE
SUBSCRIBE
Journal index
Journal
Your email address

三次样条插值三弯矩法(M 法)——以二阶导数为参数

Cubic Spline Interpolation Three Moment Method (M Method) —Taking the Second Derivative as the Parameter

Applied Mathematics Information / 2021,3(4):22-37 / 2021-12-14 look955 look1040
  • Authors: 刘大海     
  • Information:
    1.深圳市地质局,深圳;
    2.深圳地质建设工程公司,深圳
  • Keywords: 三次样条;插值;三弯矩法;M 法;计算数学;方程组;求解
  • Cubic spline; Interpolation; Three moment method; M Method; Computational mathematics; Equations; Solution
  • Abstract: 三次样条插值在工程中有重要应用。通常,建立样条插值的方法有2 种:以一阶导数为参数的三转角法(m 法)及以二阶导数为参数的三弯矩法(M 法)。在建立插值节点方程组时,m 法对第1 类边界条件的处理较为简洁,M 法对第2 类边界条件的处理较为便捷。为方便计算编程,本文全面整理、详细补充导出了三次样条插值三弯矩法(M 法)节点方程组的建立及其求解方法。
  • Cubic spline interpolation has important applications in engineering. Generally, there are two methods to establish spline interpolation: the three rotation method with the first derivative as the parameter (m method) and the three bending moment method with the second derivative as the parameter (M method). When the interpolation node equations are established, the m method is more simple to deal with the first kind of boundary conditions, and the M method is more convenient to deal with the second kind of boundary conditions. In order to facilitate the calculation and programming, the establishment and solution of node equations of cubic spline interpolation three moment method (M method) are derived in this paper.
  • DOI: https://doi.org/10.35534/ami.0304001
  • Cite:

    刘大海.三次样条插值三弯矩法(M 法)——以二阶导数为参数[J].应用数学资讯,2021,3(4):22-37.

Already have an account?
+86 027-59302486